ANALYTICAL RESULTS OF SURFACE WATER SAMPLES COLLECTED FROM RACCOON CREEK April 27, 1999 Sampling Event

Prepared for:

Lyondell Chemicals Worldwide, Inc./Beazer East Inc.

Prepared by:

Applied Hydrology Associates
Pittsburgh, PA
Denver, Colorado

June 1, 1999

ANALYTICAL RESULTS OF SURFACE WATER SAMPLES COLLECTED FROM RACCOON CREEK April 27, 1999 Sampling Event

Prepared for

LYONDELL CHEMICALS WORLDWIDE, INC./BEAZER EAST INC.

Prepared by:

Applied Hydrology Associates, Inc. Pittsburgh, PA Denver, Colorado

June 1, 1999

TABLE OF CONTENTS

<u>Section</u>	<u>Pag</u>	<u>e</u>
1.0	INTRODUCTION	1
2.0	SAMPLING	1
3.0	RESULTS	2
<u>Tables</u>		
1 2	Summary of Analytical Results for Samples Collected from Raccoon Creek	2
Figures	<u>\$</u>	
1 2	Transect Location Map	5
Appen	<u>dices</u>	
A B	Groundwater Elevations, East and West Sides of Raccoon Creek Data Validation Report	

1.0 INTRODUCTION

This report presents the results of surface water samples collected from Raccoon Creek at the Lyondell Chemical Company (LCC) / Beazer East Inc. (BEI) Monaca, PA site during the April 27, 1999 quarterly monitoring event. The samples were collected in compliance with Appendix D of the 1997 Consent Order and Agreement (1997 CO&A) between ARCO Chemical Company¹, BEI and the Pennsylvania Department of Environmental Protection (PADEP) dated October 20, 1997.

2.0 SAMPLING

Surface water samples were collected at Transect E as defined in the 1997 CO&A. The location of Transect E is shown in Figure 1. In addition, water elevations were measured in nearby monitoring wells and the results are presented in Appendix A.

A total of eight surface water samples, including a duplicate were collected from Raccoon Creek on April 27, 1999. These samples were collected at the same three locations along Transect E as in previous sampling events. The locations are shown in Figure 2 and are at the center of the stream, and approximately 30 feet from the east and west banks. At the center location, samples were collected at three depths; 6 inches below the surface, 2 inches above the bottom, and midway between the surface and bottom. Samples from the east and west sides of the transect were collected at two depths; 2 inches above the bottom, and midway between the surface and bottom.

During sampling a boat was stationed at Transect E using a rope secured to the east and west shores of Raccoon Creek. The samples were collected by using a peristaltic pump to pump water from the desired depth into three 40-ml vials preserved with hydrochloric acid. Samples were collected from the required depths utilizing tubing secured to a vertical steel rod lowered from the boat until it rested on the bottom of the creek. The rod did not penetrate the sediments on the creek bottom because a 1-foot diameter disc constructed of steel mesh is fastened perpendicular to the bottom of the rod.

Two tubes were used. The bottom of the "deep sample tube" was secured to the probe 2 inches from the bottom of the probe. The bottom of the "mid-depth sample tube" is adjustable and was secured to the probe mid-depth at each location. Care was taken not to disturb the sediments at the sampling location and the pumped water was closely monitored to ensure sediment was not included in the sample. One gallon of water was pumped through the tubing before each sample was obtained in order to purge the tubing.

¹ ARCO Chemical Company is now Lyondell Chemicals Worldwide

The samples were uniquely numbered as follows to identify the location, depth and date of sampling:

RC-EC-00-0499

Where:

RC indicates Raccoon Creek

EC indicates Transect E and location (C = center, L = left bank, R = right bank

[facing downstream])

indicates sample depth in feet and tenths of a foot (0.0 feet)

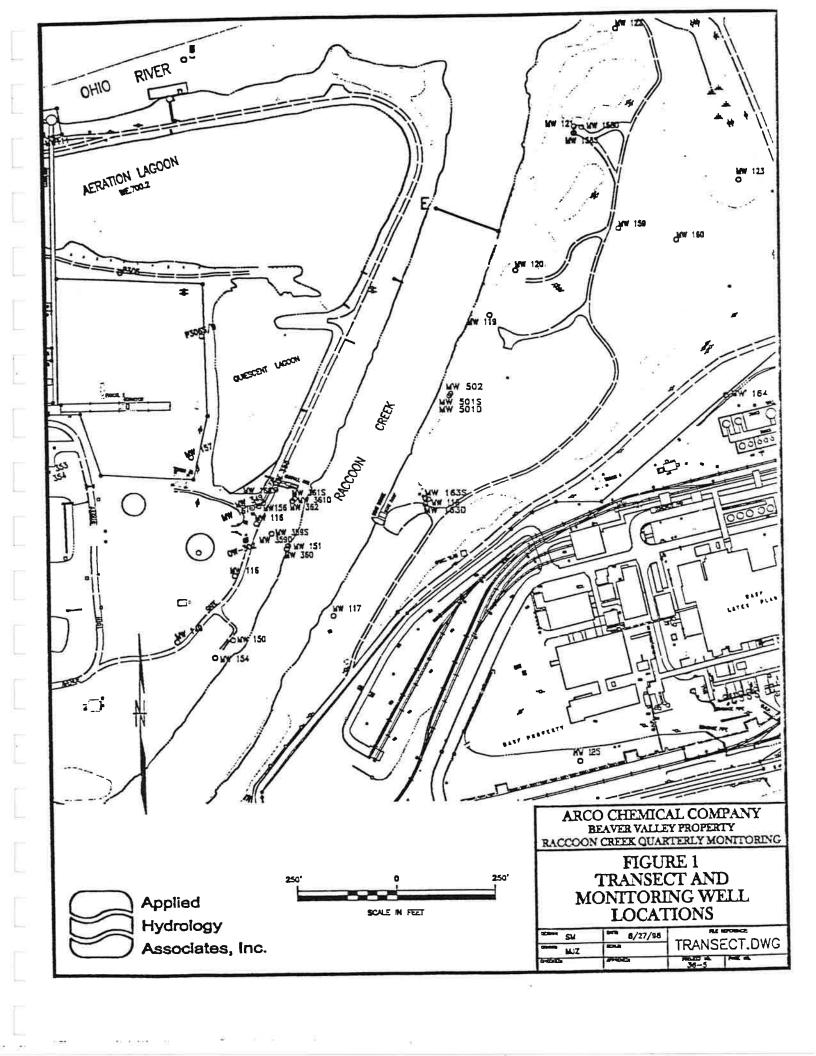
0499 indicates the month and year collected (April 1999)

Samples were logged onto a chain of custody form (included in of the data validation report in Appendix B) and stored on ice until receipt by Reliance Laboratories Inc. in Edison, NJ. Reliance analyzed the samples using USEPA Method 624 and 8260 for BTEXS.

3.0 RESULTS

The analytical results are presented in Table 1. None of the BTEXS constituents were detected in any of the eight samples. Sampling locations and depths are shown on Figure 2, along with the concentration of benzene at each location. Water levels in wells near Raccoon Creek are presented in Appendix A.

Table 1
Summary of Analytical Results for Samples Collected from Raccoon Creek


Sample Name	Benzene	Toluene	Ethylbenzene	Xylene	Styrene
RC-EL-24-0499	< 0.66	< 0.6	< 1.04	<1.04	< 0.92
RC-EL-48-0499	< 0.66	< 0.6	< 1.04	<1.04	< 0.92
RC-EC-00-0499	< 0.66	< 0.6	< 1.04	<1.04	< 0.92
RC-EC-00-0499A	< 0.66	< 0.6	< 1.04	<1.04	< 0.92
RC-EC-38-0499	< 0.66	< 0.6	< 1.04	<1.04	< 0.92
RC-EC-74-0499	< 0.66	< 0.6	< 1.04	<1.04	< 0.92
RC-ER-36-0499	< 0.66	< 0.6	< 1.04	<1.04	< 0.92
RC-ER-72-0499	< 0.66	< 0.6	< 1.04	<1.04	< 0.92

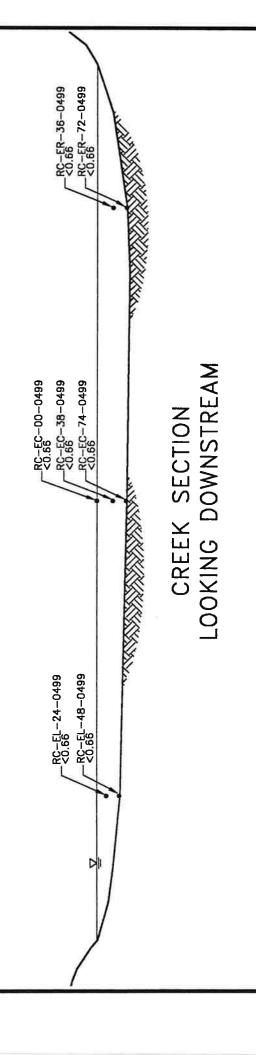

The analytical data were validated upon receipt and found to be acceptable. A Data Validation Report which includes the Certificate of Analysis is provided as Appendix B. Table 2 presents the historical concentration of benzene in Raccoon Creek at Transect E during all monitoring events to date.

Table 2
Historic Benzene Concentrations at Transect E
(ug/L)

Sampling Location	Sampling Depth	7/23/97	10/28/97	2/25/98	5/21/98	7/29/98	10/27/98	2/3/99	4/27/99
30 Feet off West Bank	Mid-depth	0.28	<0.13	<0.13	0.70	<0.13	1.57(1)	0.37	< 0.66
30 Feet off West Bank	Deep	0.81	<0.13	<0.13	0.70	<0.13	0.61(1)	0.49	< 0.66
Center of Creek	Shallow	0.24	<0.13	0.38	0.70	<0.13	<0.13	0.61(1)	< 0.66(1)
Center of Creek	Mid- Depth	0.18	<0.13	0.49	0.64	<0.13	0.2	0.64	< 0.66
Center of Creek	Deep	0.46	<0.13	0.30	0.60	<0.13	<0.13	0.69	< 0.66
30 Feet off East Bank	Mid-depth	0.16	<0.13	<0.13	<0.13	0.13	0.52	< 0.13	< 0.66
30 Feet off East Bank	Deep	<0.13	<0.13	0.14	0.22	0.22	<0.13	< 0.13	< 0.66

⁽¹⁾ Results shown are the average of the blind duplicate samples.

LEGEND

SURFACE WATER SAMPLE LOCATION
ALL CONCENTRATIONS IN ug/L

Associates, Inc.

Applied Hydrology

LYONDELL CHEMICAL COMPANY	BEAVER VALLEY PROPERTY	RACCOON CREEK QUARTERLY MONITORING

FIGURE 2 SURFACE WATER BENZENE CONCENTRATIONS AT TRANSECT 'E'

1999
27,
APRIL

ALL MUDBOD	BENZENE.dwg	78-5 MAR NO.
WIE 8/27/88	NOT TO SCALE	APPORTS
NS see	SIL	- COOD

Appendix A

Groundwater Elevations, East and West Sides of Raccoon Creek

GROUNDWATER LEVELS ON THE EAST AND WEST SIDES OF RACCOON CREEK April 27, 1999

Well Number	Top of Casing (TOC) (ft. amsl)	Depth to SPL from TOC (2) (ft. amsl)	Depth to Water from TOC (2) (ft. amsl)	Calculated Water Level Elevation (1) (ft. amsl)	Calculated SPL Thickness (3) (ft. amsl)	Comments
		Mo	nitoring We	ells Screened in	Silty Clay U	Unit
B#317 0.00	(05.04	, m	0.11	OTH AREA	37/4	
MW - 360	685.84	ND	2.11	683.73	N/A	
MW - 170	706.70	ND	22.30	684.40	N/A	
MW - 362	689.43	ND	5.53	683.90	N/A	
7.577. 440	500.50			CCOON CREEK A		
MW- 118	690.39	ND	5.79	684.60	N/A	
MW - 502	701.86	ND	18.14	683.72	N/A	
MW - 119	705.59	ND	21.86	683.73	N/A	1150
MW - 120	709.42	ND	25.68	683.74	N/A	
MW - 121	713.90	ND	30.17	683.73	N/A	
MW - 152	696,35	ND	12.66	683.69	N/A	
		Monitorin	g Wells Scro	eened in Upper	Sand and G	Gravel Unit
				OTH AREA		
MW - 344	709.42	ND	25,41	684.01	N/A	
MW - 359S	692,93	ND	9.20	683.73	N/A	
MW - 361S	689.40	ND	5.79	683.61	N/A	
MW - 169	707.93	ND	23.60	684.33	N/A	
MW - 167	711.06	ND	27.32	683.74	N/A	Top of casing changed from 707.36 to 711.06 on 11/98 to accommodate respiration monitoring well head. Monitoring well stick up is 3.70 above orig. TOC
			RA	CCOON CREEK A	REA	
MW - 163S	690.87	ND	7.21	683.66	N/A	
MW - 501S	701.30	ND	17.86	683.44	N/A	
MW - 162S	706.05	ND	22.32	683.73	N/A	
MW - 159	708.99	ND	25.35	683.64	N/A	
MW - 160	701.00	ND	17.35	683.65	N/A	
MW - 158S	713.60	ND	29.98	683.62	N/A	
MW - 122	692.78	ND	9.19	683.59	N/A	
Note: See figure	:1					
		Elevation of TO	OC minus Depth t	o Water from TOC.		
				. ND means no SPL	was detected.	
		The state of the s			the second second second	s not applicable, no SPL was detected.

GROUNDWATER LEVELS ON THE EAST AND WEST SIDES OF RACCOON CREEK April 27, 1999

Well Number	Top of Casing (TOC) (ft. amsl)	Depth to SPL from TOC (2) (ft. amsl)	Depth to Water from TOC (2) (ft. amsl)	Calculated Water Level Elevation (1) (ft. amsl)	Calculated SPL Thickness (3) (ft. amsl)	Comments
		Monitorin	g Wells Scre		Sand and Gravel	Unit
	,			OTH AREA		
MW 345	708.91	ND	25.34	683.57	N/A	
MW 361D	689.35	ND	5.74	683,61	N/A	
MW 359D	692.80	ND	9.20	683,60	N/A	
RACC	COON CREEK	AREA			5.96	
MW 163D	689.62	ND	5.96	683,66	N/A	
MW 501D	701.44	ND	17.93	683.51	N/A	
MW 166D	703.95	ND	20.43	683,52	N/A	
MW 158D	712.04	ND	28.64	683.40	N/A	
		Wat	er Levels in	Raccoon Creel	and Ohio River	
			RACCOON	CREEK AREA STA	FF GAUGE	
Time of	Staff Gauge Elevation (a)	Staff Gauge	Calculated Water Level Elevation		Commer	nts
Observation	(ft. amsl)	Reading	(ft. amsl)			
9:16	685.00	1.80	683.80			
12:31	685.00	1.60	683.60	DITIND COLOR	VICE	
0.54	(05.06	2.00		RIVER. STAFF GA	NUGE	
8:56 12:24	685.96 685.96	3.90 3.65	683.86 683.61	- it-		
12.24	083,70	5,05	083.01			
Note: See figur		1 Elevation of TO	OC minus Denth	o Water from TOC.		
				. ND means no SPL	was detected.	
						olicable, no SPL was detected.
			on staff gauge at			
			on staff gauge at			

5/12/993:45 PM

Appendix B Data Validation Report

1200 South Parker Road, Suite 100

Denver, CO 80231

Tel: (303) 873-0164

Fax: (303) 873-6110

MEMORANDUM

TO:

Files

FROM:

Skip Meier, Applied Hydrology Associates

DATE:

May 21, 1999

SUBJECT:

Data Validation Results, Raccoon Creek Sampling

Lyondell Chemical Company Beaver Valley Property

Data validation was performed on the volatile organic analytical data from eight surface water samples obtained from Raccoon Creek on April 27, 1999. The validation was performed in accordance with the "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review". Reliance Laboratories Inc. performed the analysis using EPA Method 624/8260. The samples reviewed included:

Field Sample ID	Lab Sample ID
RC-EL-24-0499	R-6228.2
RC-EL-48-0499	R-6228.4
RC-EC-00-0499	R-6228.7
RC-EC-00-0499A	R-6228.6
RC-EC-38-0499	R-6228.8
RC-EC-74-0499	R-6228.5
RC-ER-36-0499	R-6228.3
RC-ER-72-0499	R-6228.1
Field Blank	R-6228.9
Trip Blank	R-6228.10

Items reviewed and actions taken were as follows:

√ Method:

The nine samples were analyzed for BTEXS by method USEPA 634/8260 on April 29, 1999.

√ Holding Time:

All Samples were analyzed within the 14-day holding time.

√ Blanks:

No target compounds were detected in the associated method blank.

√ System Monitoring Compounds:

The "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" indicate that "Recoveries for system monitoring compounds in volatile samples and blanks must be within the limits specified in the Method." However, Method 524.2 does not specify a required recovery. Nevertheless, 4-bromofluorobenzene and 1,2-dichlorobenzene-d4 surrogate recoveries were within 99-104 percent and this is acceptable.

√ Internal Standards:

All fluorobenzene internal standards were within the established criteria for area internal standard and retention time.

GC/MS Instrument Performance Check:

All bromofluorobenzene (BFB) tunes met the ion abundance criteria. Analysis of the instrument performance check solution was performed at the beginning of each 12-hr period during which the samples were analyzed.

√ Initial Calibrations:

The initial calibration performed on April 29, 1999 for Instrument HP5971A met the 30 percent relative standard deviation (RSD) and 0.05 minimum relative response factor criteria for all compounds.

$\sqrt{}$ Continuing Calibrations:

Continuing calibration was run and compared to the correct initial calibration. All continuing calibrations met the 25 percent difference and minimum relative response factor criteria for all compounds.

√ Matrix Spike/Duplicate:

The matrix spike/duplicate results for recovery and RPD were within the Quality Control limits.

√ Target Compound Indentification/Quantitation:

No problems were identified with compound identification or quantities.

√ Field Duplicate:

A field duplicate was collected during this sampling event. The duplicate sample was denoted by an "A" at the end of the sample name. The pair is RC-EC-00-0499 and duplicate RC-EC-00-0499A. Table 1 below summarizes the RPD for the sample/duplicate pair.

Table 1: Relative Percent Difference (RPD)

Sample Name	Benzene (ppb)	RPD (%)	Toluene (ppb)	RPD (%)	Ethyl- Benzene (ppb)	RPD (%)	Xylene (ppb)	RPD (%)	Styrene (ppb)	RPD (%)
RC-EC-00-0499	ND	NA	ND	NA	ND	NA	ND	NA	ND	NA
RC-EC-00-0499A	ND	NA	ND	NA	ND	NA	ND	NA	ND	NA

ND = Non Detect

NA = Not Applicable

√ Summary:

No inconsistencies were noted. No BTEXS constituents were detected in the duplicate sample pair RC-EC-00-0499 and RC-EC-00-0499A (See Table 1). No BTEXS compounds were detected in either the trip blank or the field blank.

RELIANCE LABORATORIES, INC.

175 MAY STREET, EDISON, NJ 08837 PH (732) 738-5454 FAX (732) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

ANALYTICAL REPORT

For Lyondell Chemical Monaca, PA 15061

Project: Raccoon Creek

RELIANCE LABORATORIES, INC.

175 MAY STREET, EDISON, NJ 08837 PH (732) 738-5454 FAX (732) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

ANALYTICAL DATA REPORT

for

Lyondell Chemical Monaca, PA 15061 Project: Raccoon Creek

Date Received: 4/29/99

Sample ID	Lab ID #
RC-ER-72-0499	R-6228.1
RC-EL-24-0499	R-6228.2
RC-ER-36-0499	R-6228.3
RC-EL-48-0499	R-6228.4
RC-EC-74-0499	R-6228.5
RC-EC-00-0499A	R-6228.6
RC-EC-00-0499	R-6228.7
RC-EC-38-0499	R-6228.8
Field Blank	R-6228.9
Trip Blank	R-6228.10

G. P. Kirpalani Manager

GPK/vb

3090 WOODBRIDGE AVENUE, EDISON NJ 08837 PH (908) 738-5454 FAX (908) 738-5841

REDUCED LABORATORY DATA DELIVERABLES

Check if Complete

Date

	×	
I.	Cover Page, Format, and Laboratory Certification (Include Cross Reference Table of Field I.D. and Lab I.D)	
II.	Chain of Custody	
III.	Summary Sheets listing analytical results Including QA Data Information	<u> </u>
IV.	Laboratory Chronicle and Methodology	_ V
V.	Initial Calibration and Continuing Calibration	
VI.	Tune Summary (MS)	
VII.	Blank Summary	
VIII.	Surrogate Recovery Summary	
IX.	Chromatograms / IR Spectra	
X.	Internal Standard Summary (MS)	
XI.	Matrix Spike / Spike Duplicate Summary	
XII.	Non-Conformance Summary	$-\nu$
	GP Kuralani _ 5-12-	1 5

Laboratory Manager Signature

RELIANCE LABORATORIES INC.

175 MAY STREET, EDISON, NJ 08837 PH (732) 738-5454 FAX (732) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

TABLE OF CONTENTS

Laboratory Chronicle	page 1
Non-Conformance Summary	page 2
Methodology Summary	page 3
Analytical Results	page 4
QA/QC Data	page 5
Laboratory Certificate	page 35
Chain of Custody	page 36

RELIANCE LABORATORIES, INC.

175 MAY STREET, EDISON, NJ 08837 PH (732) 738-5454 FAX (732) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

LABORATORY CHRONICLE

Customer Name Lyondell Chemica Date Received: 4/29/99 Date Sampled: 4/27/99 Sample ID: As per chain of custody		
Organic Extraction:		
Analysis:		
1 Volatiles	4/29/99	
4 Destinides/DCP/s		
E TOUG		
Inorganics:		
1 Metals		
2 Cyanides		
3 Phenols		
Other Analysis:		
\$ 		
Supervisor Review & Approval	Tandun	

GC/MS Analysis Conformance/Non-Conformance Summary Format

		<u>NO</u>	<u>YES</u>
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks)		\angle
2.	GC/MS Tune Specifications a. BFB Meet Criteria b. DFTPP Meet Criteria		<u>~</u>
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series and 12 hours for 8000 series		<u></u>
4.	GC/MS Calibration - Initial Calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours of sample analysis for 600 series and 12 hours for 8000 series		<u></u>
5.	GC/MS Calibration Requirements a. Calibration Check Compounds (CCC) b. System Performance Check Compounds (SPCC)	_	$\frac{v}{v}$
6.	Blank Contamination - If yes, list compounds and concentrations in each a. VOA Fraction b. B/N Fraction c. Acid Fraction	blank:	
7.	Surrogate Recoveries Meet Criteria If not met, sample was diluted and reanalyzed	_	
8.	Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria	(* ******** (*	
9.	Internal Standard Area/Retention Time Shift Meet Criteria If not met, sample was diluted and reanalyzed	_	<u>V</u>
10.	Extraction Holding Time Met If not met, list number of days exceeded for each sample:		<u></u>
11.	Analysis Holding Time Met If not met, list number of days exceeded for each sample:	_	<u></u>
Ad	ditional Comments:		
-			
La	boratory Manager: UP Kupalani Date:	5-12-99	

R E L I A N C E LABORATORIES INC.

175 MAY STREET, EDISON, NJ 08837 PH (732) 738-5454 FAX (732) 738-5841 EMAIL: 74201.3501@COMPUSERVE.COM

Method Summary for EPA method 624 & 8260 (VOA's)

An inert gas is bubbled through a 5mL sample (100 microliters of methanol soil extract in 5mL of pure water) in a specially designed sparge chamber at ambient temperature. The purgeable compounds are trapped in a sorbent column. After purging is complete, the trapped volatiles are back-flushed in a megabore capillary GC/MS/Data System where they are identified and quantitated.

Instrumentation used consist of a Tekmar LSC-2000/ALS-2016 connected to a Hewlett Packard 5890 GC/ 5971A MSD.

Procedures and quality assurance are based on EPA Methods 624/8260 and TCLP.

175 MAY STREET, EDISON, NJ 08837 PH (732) 738-5454 FAX (732) 738-5841 EMAIL : 74201.3501@COMPUSERVE.COM

LABORATORY ID NJ DEP NO. 12687 PA DER NO. 68437

CERTIFICATE OF ANALYSIS

Customer:

Lyondell Chemical

Sample:

Water Samples

Lab ID:

R-6228

Reference:

Raccoon Creek

30 April 1999

Units: μg/L

Sample ID	Benzene	Toluene	Ethylbenzene	Xylene	Styrene
RC-ER-72-0499	< 0.66	< 0.6	< 1.04	< 1.04	< 0.92
RC-EL-24-0499	< 0.66	< 0.6	< 1.04	< 1.04	< 0.92
RC-ER-36-0499	< 0.66	< 0.6	< 1.04	< 1.04	< 0.92
RC-EL-48-0499	< 0.66	< 0.6	< 1.04	< 1.04	< 0.92
RC-EC-74-0499	< 0.66	< 0.6	< 1.04	< 1.04	< 0.92
RC-EC-00-0499A	< 0.66	< 0.6	< 1.04	< 1.04	< 0.92
RC-EC-00-0499	< 0.66	< 0.6	< 1.04	< 1.04	< 0.92
RC-EC-38-0499	< 0.66	< 0.6	< 1.04	< 1.04	< 0.92
Field Blank	< 0.66	< 0.6	< 1.04	< 1.04	< 0.92
Trip Blank	< 0.66	< 0.6	< 1.04	< 1.04	< 0.92

G. P. Kirpalani

Manager

Vial: 4

Data File : c:\hpchem\1\data\v6114.d

Acq On : 29 Apr 99 3:12 pm Operator: vb Inst : 5971 - In

Sample : R-6228.1 Misc : AHA - RC-ER-72-0499 Multiplr: 1.00

Quant Time: Apr 30 9:51 1999

Method : C:\HPCHEM\1\METHODS\8260_RUN.M Title : 524.2 & 8260 Purgable Organics

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 40) Chlorobenzene-d5 57) 1,4-Dichlorobenzene-d4	10.95 12.94 21.74 29.65	168 114 117 152	1073938 2378209 1622461 628322	50.00 ug/L 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.06 0.06 0.06 0.04
System Monitoring Compounds				%P	Recovery
26) Dibromofluoromethane 39) Toluene-d8 58) 4-Bromofluorobenzene	10.73 17.24 25.71	111 98 95	886446 2431727 869324	52.57 ug/L 51.88 ug/L 51.13 ug/L	105.13% 103.76% 102.26%
Target Compounds					Qvalue

^{(#) =} qualifier out of range (m) = manual integration v6114.d 8260_RUN.M Tue May 11 10:06:04 1999

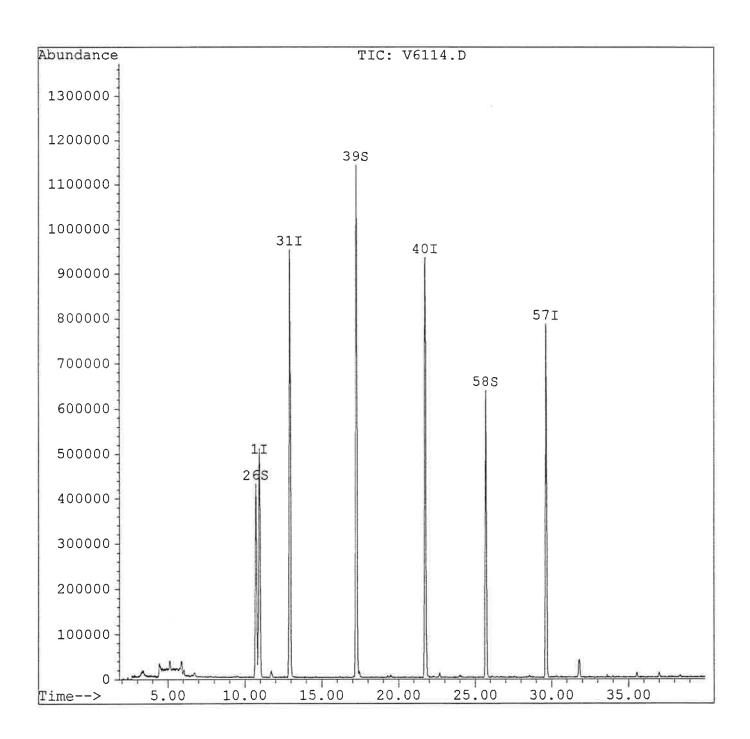
Vial: 4

Multiplr: 1.00

: 5971 - In

Operator: vb

Inst


Data File : c:\hpchem\1\data\v6114.d

Acq On : 29 Apr 99 3:12 pm

Sample : R-6228.1 Misc : AHA - RC-ER-72-0499

Quant Time: Apr 30 9:51 1999

: C:\HPCHEM\1\METHODS\8260 RUN.M Method Title : 524.2 & 8260 Purgable Organics

Data File : C:\HPCHEM\1\DATA\V6115.D

Acq On : 29 Apr 99 4:03 pm Sample : R-6228.2 Misc : AHA - RC-EL-24-0499

Operator: vb Inst : 5971 = In

Multiplr: 1.00

Vial: 9

Quant Time: May 11 10:17 1999

Method : C:\HPCHEM\1\METHODS\8260_RUN.M
Title : 524.2 & 8260 Purgable Organics

Last Update : Thu Apr 29 14:22:46 1999 Response via : Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 40) Chlorobenzene-d5 57) 1,4-Dichlorobenzene-d4	10.95 12.94 21.75 29.66	168 114 117 152	1035931 2295526 1554877 616023	50.00 ug/L 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.06 0.06 0.06 0.05
System Monitoring Compounds				8F	lecovery
26) Dibromofluoromethane	10.73	111	840782	51.69 ug/L	103.37%
39) Toluene-d8	17.25	98	2343217	51.79 ug/L	103.59%
58) 4-Bromofluorobenzene	25.70	95	838572	50.30 ug/L	100.61%
Warrant Compounds					0112 2110

Target Compounds

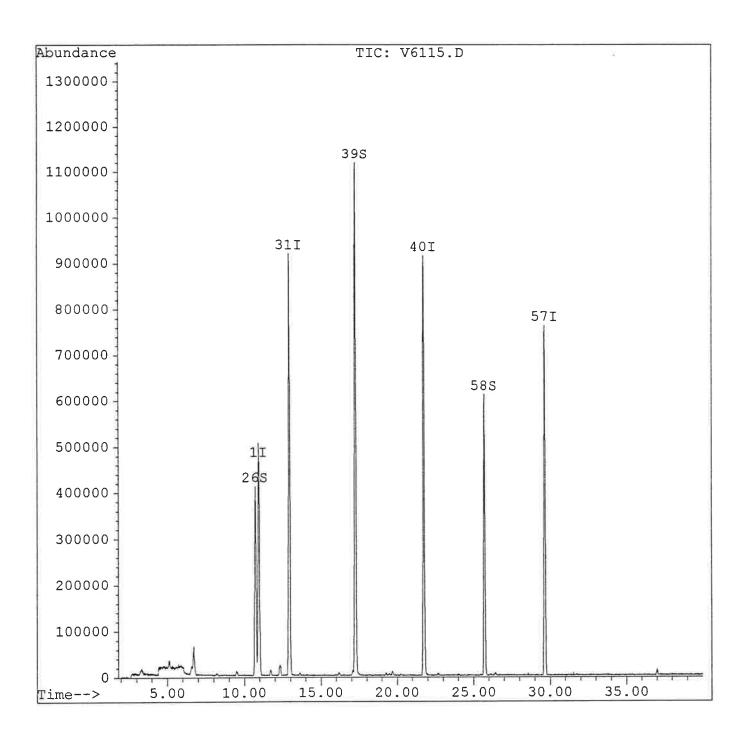
Qvalue

^{(#) =} qualifier out of range (m) = manual integration V6115.D 8260_RUN.M Tue May 11 10:17:58 1999

Vial: 9

Multiplr: 1.00

Inst : 5971 - In


Operator: vb

Data File : C:\HPCHEM\1\DATA\V6115.D

Acq On : 29 Apr 99 4:03 pm Sample : R-6228.2 Misc : AHA - RC-EL-24-0499

Quant Time: May 11 10:17 1999

: C:\HPCHEM\1\METHODS\8260 RUN.M Method Title : 524.2 & 8260 Purgable Organics

Vial: 10

Multiplr: 1.00

: 5971 - In

Operator: vb


Inst

Data File : c:\hpchem\1\data\v6116.d

Acq On : 29 Apr 99 4:54 pm Sample : R-6228.3 Misc : AHA - RC-ER-36-0499

Quant Time: Apr 30 9:51 1999

: C:\HPCHEM\1\METHODS\8260_RUN.M Method Title : 524.2 & 8260 Purgable Organics

Vial: 11

Inst : 5971 - In

Operator: vb

Multiplr: 1.00

Data File : c:\hpchem\1\data\v6117.d

Acq On : 29 Apr 99 5:44 pm Sample : R-6228.4 Misc : AHA - RC-EL-48-0499

Quant Time: Apr 30 9:51 1999

Method : C:\HPCHEM\1\METHODS\8260_RUN.M Title : 524.2 & 8260 Purgable Organics

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 40) Chlorobenzene-d5 57) 1,4-Dichlorobenzene-d4	10.96 12.95 21.75 29.66	168 114 117 152	1111483 2344884 1648927 688597	50.00 ug/L 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.07 0.07 0.06 0.05
System Monitoring Compounds 26) Dibromofluoromethane 39) Toluene-d8 58) 4-Bromofluorobenzene	10.73 17.24 25.71	111 98 95	809510 2394121 917934	%I 46.38 ug/L 51.81 ug/L 49.26 ug/L	Recovery 92.76% 103.61% 98.52%
Target Compounds					Qvalue

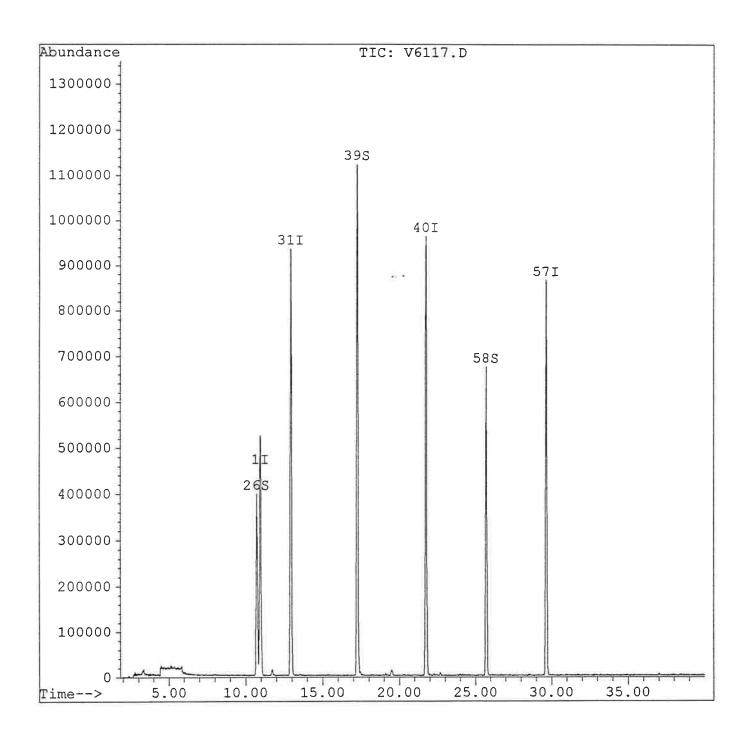
^(#) = qualifier out of range (m) = manual integration v6117.d 8260_RUN.M Tue May 11 10:06:38 1999

Vial: 11

: 5971 - In

Operator: vb

Multiplr: 1.00


Inst

Data File : c:\hpchem\1\data\v6117.d

Acq On : 29 Apr 99 5:44 pm Sample : R-6228.4 Misc : AHA - RC-EL-48-0499

Quant Time: Apr 30 9:51 1999

: C:\HPCHEM\1\METHODS\8260 RUN.M Method Title : 524.2 & 8260 Purgable Organics

Data File : c:\hpchem\1\data\v6118.d Vial: 12 Operator: vb

Inst : 5971 - In

Acq On : 29 Apr 99 6:34 pm Sample : R-6228.5 Misc : AHA - RC-EC-74-0499 Multiplr: 1.00

Quant Time: Apr 30 9:52 1999

Method : C:\HPCHEM\1\METHODS\8260_RUN.M
Title : 524.2 & 8260 Purgable Organics

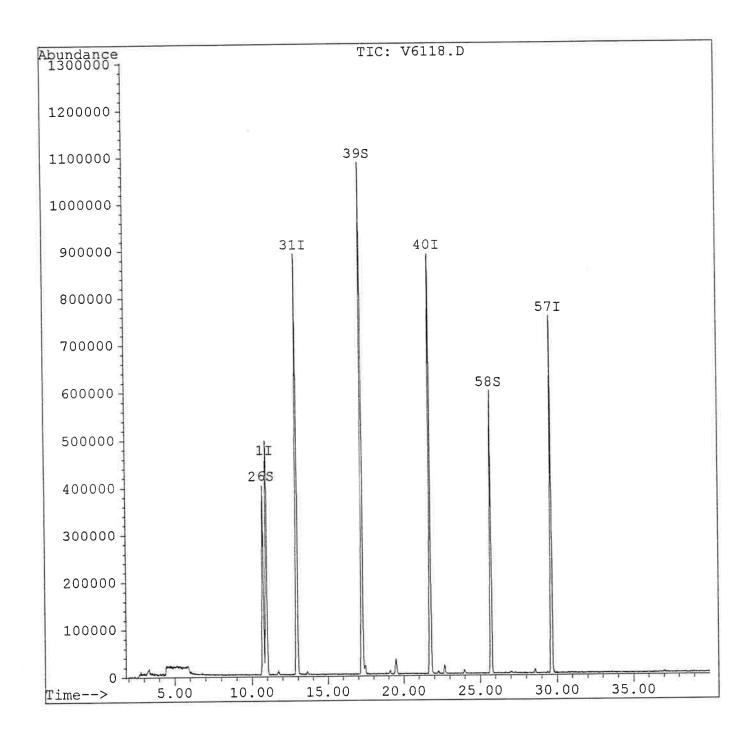
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 40) Chlorobenzene-d5 57) 1,4-Dichlorobenzene-d4	10.95 12.94 21.75 29.65	168 114 117 152	1035814 2250352 1530772 594903	50.00 ug/L 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.06 0.06 0.06 0.04
System Monitoring Compounds 26) Dibromofluoromethane 39) Toluene-d8 58) 4-Bromofluorobenzene	10.73 17.24 25.70	111 98 95	826095 2275807 817516	50.79 ug/L	ecovery 101.58% 102.63% 101.57%
Target Compounds					Qvalue

^{(#) =} qualifier out of range (m) = manual integration v6118.d 8260_RUN.M Tue May 11 10:06:49 1999

Vial: 12

: 5971 - In

Operator: vb


Multiplr: 1.00

Inst

Data File : c:\hpchem\1\data\v6118.d

Acq On : 29 Apr 99 6:34 pm Sample : R-6228.5 Misc : AHA - RC-EC-74-0499 Quant Time: Apr 30 9:52 1999

: C:\HPCHEM\1\METHODS\8260_RUN.M Method Title : 524.2 & 8260 Purgable Organics

Data File : c:\hpchem\1\data\v6119.d Vial: 13 Operator: vb

Inst : 5971 - In

Acq On : 29 Apr 99 7:24 pm Sample : R-6228.6 Misc : AHA - RC-EC-00-0499A Multiplr: 1.00

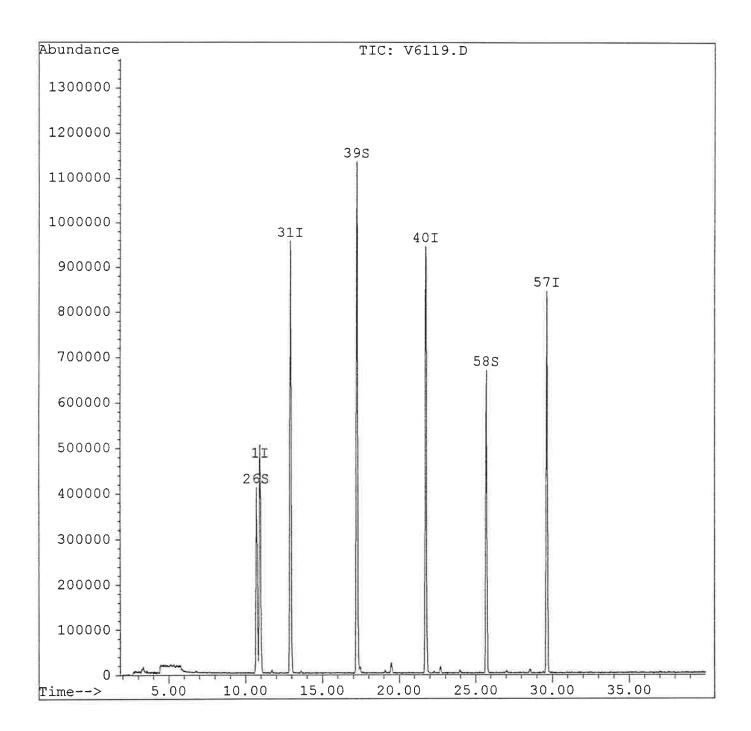
Quant Time: Apr 30 9:52 1999

Method : C:\HPCHEM\1\METHODS\8260_RUN.M Title : 524.2 & 8260 Purgable Organics

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 40) Chlorobenzene-d5 57) 1,4-Dichlorobenzene-d4	10.95 12.94 21.74 29.64	168 114 117 152	1076991 2378258 1674646 677610	50.00 ug/L 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.05
System Monitoring Compounds				9	Recovery
26) Dibromofluoromethane 39) Toluene-d8 58) 4-Bromofluorobenzene	10.73 17.24 25.70	111 98 95	847707 2428495 915281	50.13 ug/L 51.81 ug/L 49.92 ug/L	103.62%
Target Compounds					Qvalue

^(#) = qualifier out of range (m) = manual integration v6119.d 8260_RUN.M Tue May 11 10:07:03 1999

Data File : c:\hpchem\1\data\v6119.d


Acq On : 29 Apr 99

Operator: vb Sample : R-6228.6 Misc : AHA - RC-EC-00-0499A : 5971 = In Inst Multiplr: 1.00

Vial: 13

Quant Time: Apr 30 9:52 1999

: C:\HPCHEM\1\METHODS\8260 RUN.M Method : 524.2 & 8260 Purgable Organics Title

Vial: 14 Operator: vb

Inst : 5971 - In

Multiplr: 1.00

Quant Time: Apr 30 9:52 1999

Method : C:\HPCHEM\1\METHODS\8260_RUN.M
Title : 524.2 & 8260 Purgable Organics

Last Update : Thu Apr 29 14:22:46 1999 Response via : Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 40) Chlorobenzene-d5 57) 1,4-Dichlorobenzene-d4	10.96 12.94 21.74 29.65	168 114 117 152	1053008 2338093 1667274 672915	50.00 ug/L 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.07 0.06 0.05 0.05
System Monitoring Compounds 26) Dibromofluoromethane 39) Toluene-d8 58) 4-Bromofluorobenzene	10.73 17.24 25.70	111 98 95	822679 2383644 912474	%R 49.75 ug/L 51.73 ug/L 50.11 ug/L	99.51% 103.46% 100.22%

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration v6120.d 8260_RUN.M Tue May 11 10:07:14 1999

Vial: 14

Inst : 5971 - In

Operator: vb

Multiplr: 1.00

Data File : c:\hpchem\1\data\v6120.d

Acq On : 29 Apr 99 8:14 pm Sample : R-6228.7 Misc : AHA - RC-EC-00-0499

Quant Time: Apr 30 9:52 1999

: C:\HPCHEM\1\METHODS\8260_RUN.M Method : 524.2 & 8260 Purgable Organics Title

Data File : c:\hpchem\1\data\v6121.d

Vial: 15 Acq On : 29 Apr 99 9:03 pm Operator: vb

Inst : 5971 - In Sample : R-6228.8 Misc : AHA - RC-EC-38-0499 Multiplr: 1.00

Quant Time: Apr 30 9:52 1999

: C:\HPCHEM\1\METHODS\8260_RUN.M

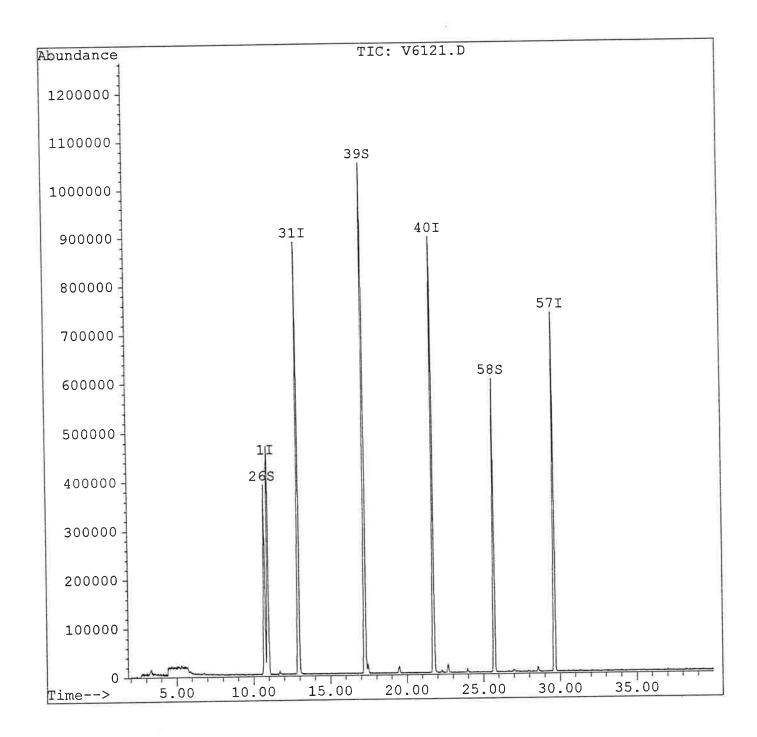
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 40) Chlorobenzene-d5 57) 1,4-Dichlorobenzene-d4	10.96 12.94 21.74 29.65	168 114 117 152	990698 2214403 1550413 591268	50.00 ug/L 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.07 0.06 0.05 0.04
System Monitoring Compounds 26) Dibromofluoromethane 39) Toluene-d8 58) 4-Bromofluorobenzene	10.73 17.24 25.70	111 98 95	795608 2240111 817524	%R 51.14 ug/L 51.33 ug/L 51.10 ug/L	ecovery 102.29% 102.66% 102.19%
Target Compounds					Qvalue

^(#) = qualifier out of range (m) = manual integration v6121.d 8260_RUN.M Tue May 11 10:07:22 1999

Vial: 15

Inst : 5971 = In

Operator: vb


Multiplr: 1.00

Data File : c:\hpchem\1\data\v6121.d

Acq On : 29 Apr 99 9:03 pm

Sample : R-6228.8 Misc : AHA - RC-EC-38-0499 Quant Time: Apr 30 9:52 1999

: C:\HPCHEM\1\METHODS\8260_RUN.M Method : 524.2 & 8260 Purgable Organics Title

Data File : c:\hpchem\1\data\v6122.d

Operator: vb Inst: 5971 = In

Vial: 16

Acq On : 29 Apr 99 9:53 pm Sample : R-6228.9 Misc : AHA - Field Blank Multiplr: 1.00

Quant Time: Apr 30 9:53 1999

Method : C:\HPCHEM\1\METHODS\8260_RUN.M Title : 524.2 & 8260 Purgable Organics

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 40) Chlorobenzene-d5 57) 1,4-Dichlorobenzene-d4	10.95 12.94 21.74 29.65	168 114 117 152	1023922 2328360 1631722 632822	50.00 ug/L 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.06 0.06 0.05 0.04
System Monitoring Compounds 26) Dibromofluoromethane 39) Toluene-d8 58) 4-Bromofluorobenzene	10.73 17.24 25.71	111 98 95	784459 2354961 866514	%R 48.79 ug/L 51.32 ug/L 50.60 ug/L	97.58% 102.64% 101.20%
Target Compounds					Qvalue

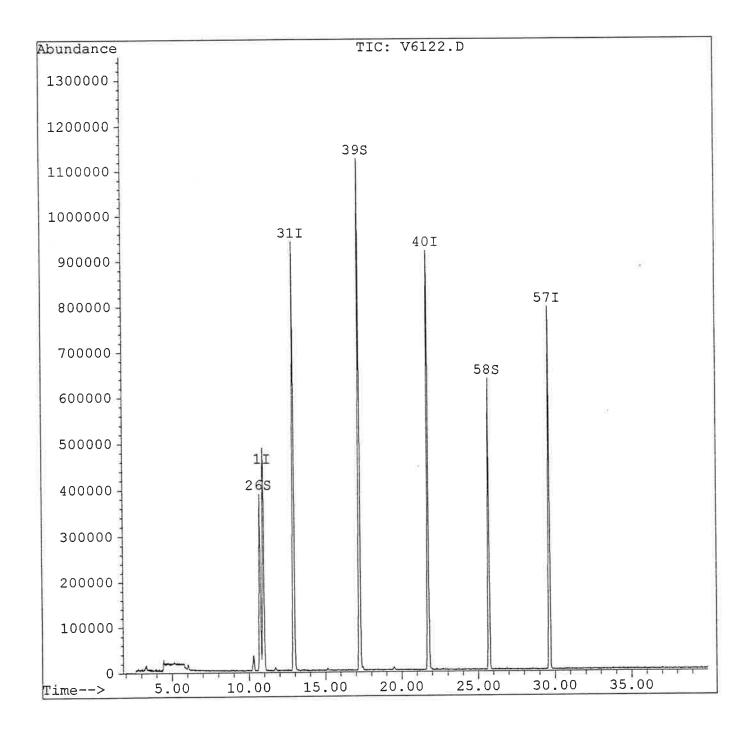
^(#) = qualifier out of range (m) = manual integration v6122.d 8260_RUN.M Tue May 11 10:07:35 1999

Vial: 16 Operator: vb

Multiplr: 1.00

Inst

: 5971 - In


Data File : c:\hpchem\1\data\v6122.d Acq On : 29 Apr 99 9:53 pm

: R-6228.9 Sample

Misc : AHA - Field Blank

Quant Time: Apr 30 9:53 1999

: C:\HPCHEM\1\METHODS\8260_RUN.M Method : 524.2 & 8260 Purgable Organics

Data File : c:\hpchem\1\data\v6123.d Vial: 1 Operator: vb

Acq On : 29 Apr 99 10:43 pm Sample : R-6228.10 Misc : AHA - Trip Blank Inst : 5971 - In

Multiplr: 1.00

Quant Time: Apr 30 9:53 1999

: C:\HPCHEM\1\METHODS\8260_RUN.M Method Method : C:\HPCHEM\1\METHODS\826U_KUN.m Title : 524.2 & 8260 Purgable Organics

Last Update : Thu Apr 29 14:22:46 1999 Response via : Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 40) Chlorobenzene-d5 57) 1,4-Dichlorobenzene-d4	10.95 12.94 21.74 29.65	168 114 117 152	1090599 2465238 1742209 689855	50.00 ug/L 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.06 0.06 0.05 0.04
System Monitoring Compounds 26) Dibromofluoromethane 39) Toluene-d8 58) 4-Bromofluorobenzene	10.73 17.24 25.70	111 98 95	824654 2491921 957959	%F 48.15 ug/L 51.29 ug/L 51.32 ug/L	Recovery 96.31% 102.58% 102.63%
Target Compounds					Qvalue

(#) = qualifier out of range (m) = manual integration

v6123.d 8260_RUN.M Tue May 11 10:07:49 1999

Page 1

Vial: 1

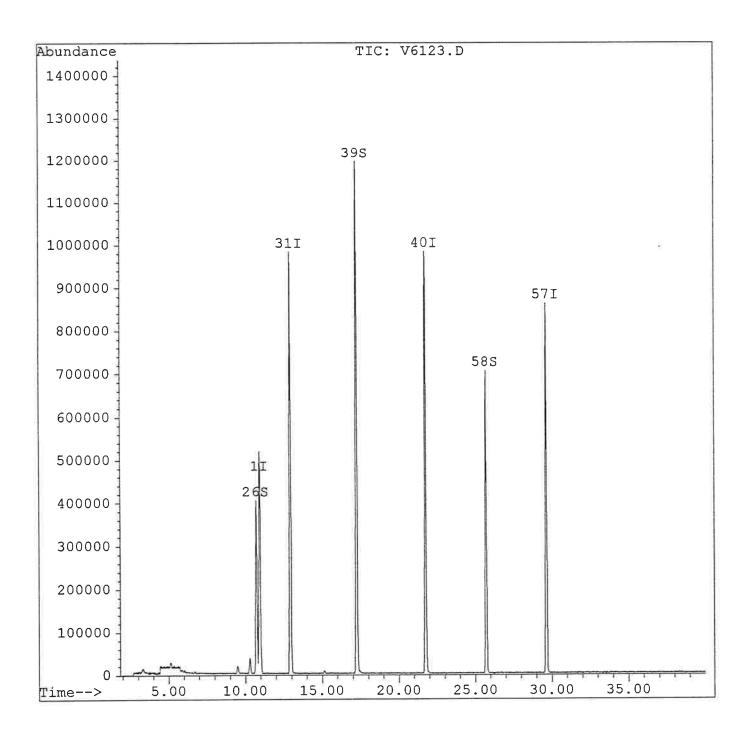
Multiplr: 1.00

: 5971 = In

Operator: vb

Inst

Data File : c:\hpchem\1\data\v6123.d


Acq On : 29 Apr 99 10:43 pm

Sample : R-6228.10

: AHA - Trip Blank Misc

Quant Time: Apr 30 9:53 1999

Method : C:\HPCHEM\1\METHODS\8260_RUN.M : 524.2 & 8260 Purgable Organics Title

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Customer : Lyondell

Ī		SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	#	#	#	#	OUT
01	VBLK01	98	103	104		
02	R-6228.1	105	104	102		
03	R-6228.2	103	104	101		
04	R-6228.3	97	104	99		
05	R-6228.4	93	104	99		
06	R-6228.5	102	103	102		
07	R-6228.6	100	104	100		
80	R-6228.7	100	103	100		
09	R-6228.8	102	103	102		
10	R-6228.9	98	103	101		
11	R-6228.10	96	103	103		
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						

QC LIMITS

(70-121)SMC1 = Dibromofluoromethane (81-117)SMC2 = Toluene-d8 (74-121)

SMC3 = 4-Bromofluorobenzene

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

FORM II VOA-1

RELIANCE LABORATORIES

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Customer: Lyondell

Matrix Spike - Sample No.: R-8228.3

	SPIKE	SAMPLE	MS	MS	QC.
1	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
Benzene	30	0	36	119	(59-172)
Toluene	30	0	36	120	(66-142)
Ethylbenzene	30	0	36	120	(62-137)
o-xylenes	30	0	36	121	(59-139)
Styrene	30	0	35	117	(60-133)

	SPIKE	MSD	MS			
	ADDED	CONCENTRATION	%	%	QC L	.IMITS
COMPOUND	(ug/L)	(ug/L)	REC #	RPD #	RPD	REC.
Benzene	30	37	123	3	22	(59-172)
Toluene	30	36	118	2	21	(66-142)
Ethylbenzene	30	35	117	3	24	(62-137)
o-xylenes	30	35	116	4	21	(59-139)
Styrene	30	35	116	2	21	(60-133)

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: 0 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

Comments:				
*				

3/90

VOLATILE METHOD BLANK SUMMARY

VBLK0

2014

2103

2153

2243

	Customer:	Lyondell		
Lab File ID V61	13.D			Lab Sample ID: BLANK01
Date Analyzed:	4/29/99			Time Analyzed: 1421
GC Column:	DB-624 ID:	0.53(mm))	
Instrument ID:	HP5971			
THI	S METHOD BLANK	- APPLIES TO THE	FOLLOWING :	SAMPLES, MS AND MSD:
1		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	R-6228.1	ER-72	V6114.D	1512
02	R-6228.2	EL-24	V6115.D	1603
03	R-6228.3	ER-36	V6116.D	1654
04	R-6228.4	EL-48	V6117.D	1744
05	R-6228.5	EC-74	V6118.D	1834
06	R-6228.6	EC-00-A	V6119.D	1924

V6120.D

V6121.D

V6122.D

V6123.D

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

EC-00

EC-38

FBLANK

TBLANK

COMMENTS:			

Page 1 of 1

07 R-6228.7

08 R-6228.8

09 R-6228.9

10 R-6228.10

FORM IV VOA

Data File : C:\HPCHEM\1\DATA\V6113.D Vial: 3 Operator: vb

Acq On : 29 Apr 99 2:21 pm Sample : blank Misc : blank Inst : 5971 - In

Multiplr: 1.00

Quant Time: May 11 10:11 1999

Method : C:\HPCHEM\1\METHODS\8260_RUN.M Title : 524.2 & 8260 Purgable Organics

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 40) Chlorobenzene-d5 57) 1,4-Dichlorobenzene-d4	10.96 12.96 21.75 29.66	168 114 117 152	1063922 2329366 1599487 610647	50.00 ug/L 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.07 0.07 0.06 0.05
System Monitoring Compounds				% F	Recovery
26) Dibromofluoromethane	10.73	111	815869	48.84 ug/L	97.67%
39) Toluene-d8	17.25	98	2358299	51.37 ug/L	
58) 4-Bromofluorobenzene	25.71	95	856047	51.81 ug/L	103.61%
Target Compounds					Qvalue

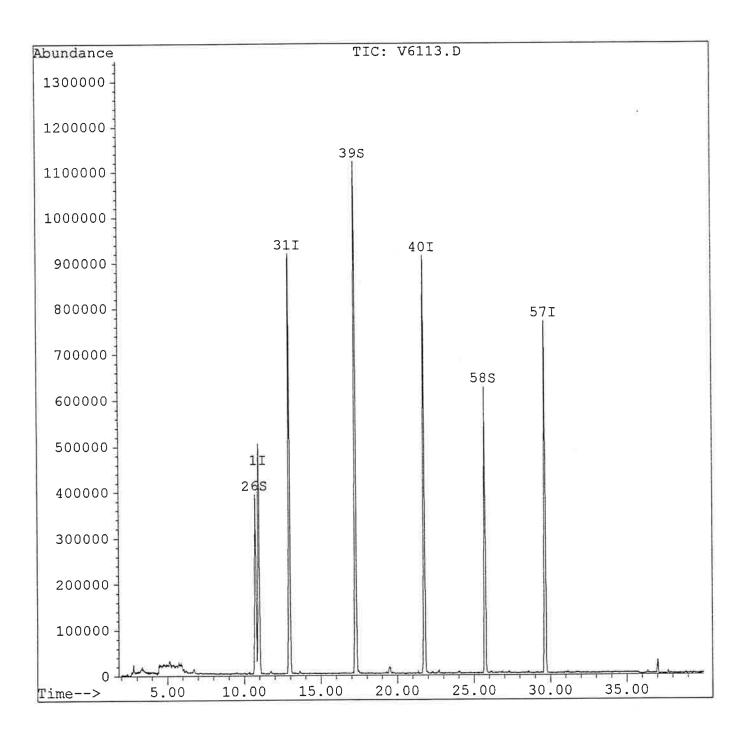
^{(#) =} qualifier out of range (m) = manual integration V6113.D 8260_RUN.M Tue May 11 10:12:09 1999

Vial: 3

Multiplr: 1.00

Inst : 5971 - In

Operator: vb


Data File : C:\HPCHEM\1\DATA\V6113.D

Acq On : 29 Apr 99 2:21 pm Sample : blank Misc : blank

Quant Time: May 11 10:11 1999

: C:\HPCHEM\1\METHODS\8260_RUN.M Method

: 524.2 & 8260 Purgable Organics Last Update : Thu Apr 29 14:22:46 1999 Response via : Multiple Level Calibration

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Customer : Lyondell	
---------------------	--

Lab File ID: V6107.D BFB Injection Date: 4/29/99

Instrument ID: HP5971A BFB Injection Time: 0856

GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)

		%RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	8.0 - 40.0% of mass 95	22.9
75	30.0 - 66.0% of mass 95	45.5
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.3
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 120.0% of mass 95	66.3
175	4.0 - 9.0% of mass 174	5.8 (8.7)1
176	93.0 - 101.0% of mass 174	63.4 (95.5)1
177	5.0 - 9.0% of mass 176	4.0 (6.4)2

1-Value is % mass 174 2-Value is % mass 176

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

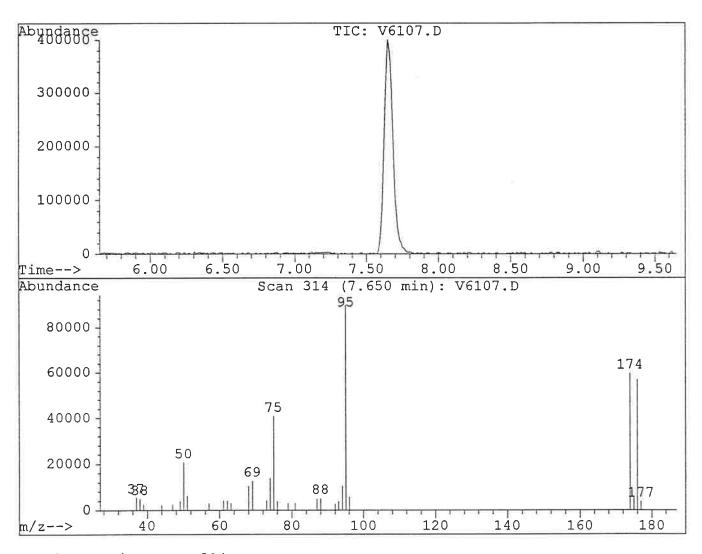
	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1 VSTD150	ICC150	V6108.D	4/29/99	0929
2 VSTD050	ICC050	V6109.D	4/29/99	1019
3 VSTD020	ICC020	V6110.D	4/29/99	1109
4 VSTD100	ICC100	V6111.D	4/29/99	1159
5 VSTD200	ICC200	V6112.D	4/29/99	1250
6 VBLK01	BLANK01	V6113.D	4/29/99	1421
7 R-6228.1	ER-72	V6114.D	4/29/99	1512
8 R-6228.2	EL-24	V6115.D	4/29/99	1603
9 R-6228.3	ER-36	V6116.D	4/29/99	1654
0 R-6228.4	EL-48	V6117.D	4/29/99	1744
1 R-6228.5	EC-74	V6118.D	4/29/99	1834
2 R-6228.6	EC-00-A	V6119.D	4/29/99	1924
3 R-6228.7	EC-00	V6120.D	4/29/99	2014
4 R-6228.8	EC-38	V6121.D	4/29/99	2103
5 R-6228.9	FBLANK	V6122.D	4/29/99	2153
6 R-6228.10	TBLANK	V6123.D	4/29/99	2243
7				
8				
9				
20				
21				
22				

Page 1 of 1

Data File : C:\HPCHEM\1\DATA\V6107.D

Acq On : 29 Apr 99 8:56 am

Sample : bfb


Misc :

Vial: 1 Operator: vb

Inst : 5971 - In

Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\8260_RUN.M
Title : 524.2 & 8260 Purgable Organics

Peak Apex is scan: 314

1	Target Mass		Rel. to Mass	 	Lower Limit%	1	Upper Limit%		Rel. Abn%	ļ	Raw Abn	1	Result Pass/Fail	
1	50	I	95	ï	15	1	40	1	22.9	1	20608	1	PASS	1
i	75	î	95	Î	30	1	80	1	45.5	1	40888	1	PASS	ı
ĺ.	95	ì	95	1	100	1	100	1	100.0	1	89936	1	PASS	1
i.	96	ĺ	95	1	5	ĺ	9	1	6.3	1	5690	1	PASS	Ī
1	173	1	174	1	0	1	2	1	0.0	1	0	1	PASS	1
1	174	1	95	i	50	1	100	1	66.3	1	59672	1	PASS	1
1	175	Î	174	1	5	1	9	1	8.7	1	5213	1	PASS	Ţ
1	176	1	174	1	95	1	101	- 1	95.5	1	56984	1	PASS	1
İ	177	Ì	176	Ī	5	1	9	1	6.4	1	3630	1	PASS	I

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Customer: Lyondeli

Instrument ID: <u>HP5971A</u> Calibration Date(s): <u>4/29/99</u> <u>4/29/99</u>

Calibration Times: 0929 1250

GC Column: DB-624 ID: <u>0.53</u> (mm)

Column: DB-624	- ימו:	0.53	(mm)				
ab File ID:	RRF20 =			RRF50 =			
F100 = V6111.D	RRF150 =	V6108.D		RRF200 =	V6112.D		
COMPOUND	RRF20	RRF50	RRF100	RRF150	RRF200	RRF	% RSI
zene	3.720	3.852	3.703	3.420	3.282	3.595	6.6
iene	2.346	2.261	2.252	2.082	2.070	2.202	5.5
/Ibenzene	2.556	2.486	2.517	2.298	2.297	2.431	5.1
p-xylenes	0.889	0.874	0.895	0.827	0.812	0.859	4.4
vlene	1.880	1.826	1.861	1.683	1.668	1.784	5.6
rene	1.478	1.423	1.483	1.308	1.346	1.407	5,6
romofluoromethane	0.796	0.782	0.801	0.732	0.815	0.785	4.1
							1.1
	1 358	1 364	1 334	1.353			0.9
uene-d8 Iromofluorobenzene	0.994 1.358	0.974 1.364	1.000	0.979 1.353	0.981 1.356	0.985 1.353	

^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

Page 1 of 2

FORM VI VOA

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Customer: Lyondell

Lab File ID (Standard): V6109.D

Date Analyzed: 4/29/99

Instrument ID: HP5971A

Time Analyzed: 1019

GC Column: DB-624

ID: 0.53 (mm)

	IS1		IS2		IS3	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	1135431	10.94	2493803	12.94	1693043	21.73
UPPER LIMIT	2270862	11.44	4987606	13.44	3386086	22.23
LOWER LIMIT	567716	10.44	1246902	12.44	846522	21.23
SAMPLE						
NO.						
01 VBLK01	1063922	10.96	2329366	12.96	1599487	21.75
02 R-6228.1	1073938	10.95	2378209	12.94	1622461	21.74
03 R-6228.2	1035931	10.95	2295526	12.94	1554877	21.75
04 R-6228.3	1049884	10.96	2296027	12.95	1553892	21.75
05 R-6228.4	1111483	10,96	2344884	12.95	1648927	21.75
06 R-6228.5	1035814	10.95	2250352	12.94	1530772	21.75
07 R-6228.6	1076991	10.95	2378258	12.94	1674646	21.74
08 R-6228.7	1053008	10.96	2338093	12.94	1667274	21.74
09 R-6228.8	990698	10.96	2214403	12.94	1550413	21.74
10 R-6228.9	1023922	10.95	2328360	12.94	1631722	21.74
11 R-6228.10	1090599	10.95	2465238	12.94	1742209	21.74
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Page 1 of 2

FORM VIII VOA

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Customer: Lyondell

Lab File ID (Standard): V6109.D Date Analyzed: 4/29/99

Instrument ID: HP5971A Time Analyzed: 1019

GC Column: DB-624 ID: 0.53 (mm)

		IS4									
		AREA #	RT #	AREA	#	RT	#	AREA	#	RT	#
	12 HOUR STD	652532	29.65								
	UPPER LIMIT	1305064	30.15								
	LOWER LIMIT	326266	29.15								
	SAMPLE										
	NO.										
13	VBLK01	610647	29.66								
02	R-6228.1	628322	29.65								
03	R-6228.2	616023	29.66								
04	R-6228.3	638415	29.66								
05	R-6228.4	688597	29.66								
06	R-6228.5	594903	29.65								
07	R-6228.6	677610	29.64								
80	R-6228.7	672915	29.65								
09	R-6228.8	591268	29.65								
10	R-6228.9	632822	29.65								
11	R-6228.10	689855	29.65								
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22				fp -							

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Page 2 of 2

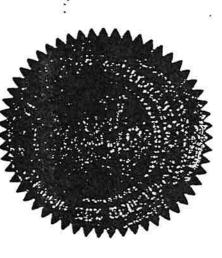
FORM VIII VOA

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Certifies That
Reliance Laboratories, Inc
3090 Wood Bridge Avenue
Edison, NJ 08837

having duly met the requirements of the

Regulations Governing Laboratory Certification


And Standards Of Performance NJ.A.C. 7:18 et. seq.

is hereby approved as a

State Certified Water Laboratory

To perform the analyses as indicated on the Annual Certified Parameter List which must accompany this certificate to be valid

12687 PERMANENT CERTIFICATION NUMBER Ianijary 11, 1989

DEPARTMENT OF ENVIRONMENTAL PROTECTION

N.J.A.C. 7:18-2.11(d) and agreed to by the Laboratory Manager on filing the application This certification is subject to unannounced laboratory inspections as specified by

TO BE CONSPICUOUSLY DISPLAYED AT THE LABORATORY WITH THE ANNUAL CERTIFIED PARAMETER LIST.

Paga Z of Z

CUSTOMER:	Lyondell Chemical	
ADDRESS:	400 frankfirt Rocal	
Manaca.	PA15061	
PHONE (734)	728 - 6582	
FAX (724)	728-848	,

Reliance Laboratories, Inc. 175 May Street Edison, NJ 08037 Tel. 732-738-5454 / Fax. 732-738-5841

LAB ID:	DATE:
R-6228	4/27/99

Project ID: _____

Standard (rush)

Fax results: 8 / n (727) 728 6498

Bample Intacti 🗭 / n
+15
(602/8020 418_1) (24/8260) BN / + 25
SAMPLE ID Date Spid. Time of Company of Comp
RC:ER-72-0499 4/27/99 12:45 1 V
RC-EL-24-499 4/27/99 12:45 1 V
R: ER-36-0499 4/27/199 12:45 1 V
R-EL-48-0499 4/27/99 12:45 1 V
R-EC-74-0499 4/27/92 12:45 /
8C-EC-00-0499A 4/27/99 12:45 1 V
R-EC-00-0499 4/27/99 12:45 1
REC-38-0499 4/27/99 12:45) V
Field Blank 4/27/99 12:45 1 1
Tr. P Blank 4/27/99 12:45 1 1 1 1 1 1

Dala/Thra.

Agent of: Received by: Agent of:

BEHANDE -

: Our,

Submilled by:
Agent of:
Received by:
Agent of:
Date/Time:

່ງລາດ/Thne:

Standard Reduced Cushandred

Received by: Agent of:

Submitted by: Agent of:

Report to: Deliverables:

andina

Submilled by:

BUP

			44 - 47 19		
				50	
4. A. S.					
	W- 20 1				
LINE					
					Barrier Barrier
L. yearsting					But SEL
		Salar William			